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A boundary integral equation is described for the prediction of acoustic
propagation from a monofrequency coherent line source in a cutting with
impedance boundary conditions onto surrounding ¯at impedance ground. The
problem is stated as a boundary value problem for the Helmholtz equation and
is subsequently reformulated as a system of boundary integral equations via
Green's theorem. It is shown that the integral equation formulation has a
unique solution at all wavenumbers. The numerical solution of the coupled
boundary integral equations by a simple boundary element method is then
described. The convergence of the numerical scheme is demonstrated
experimentally. Predictions of A-weighted excess attenuation for a tra�c noise
spectrum are made illustrating the e�ects of varying the depth of the cutting
and the absorbency of the surrounding ground surface.

# 1999 Academic Press

1. INTRODUCTION

A boundary integral equation formulation for the two-dimensional Helmholtz
equation in a locally-perturbed half plane is developed to calculate sound
propagation out of a cutting of arbitrary cross-section and surface impedance
onto surrounding ¯at rigid or homogeneous ground. Speci®cally, the case
considered is that of propagation from a monofrequency coherent line source in
a cutting which is assumed to be straight and in®nitely long with cross-section
and surface treatment that do not vary along its length. The impedance is
allowed to vary in the cutting in the plane perpendicular to the line source so
that it is possible to model, for example, a road running down the centre of the
cutting, with grass banks on either side.
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Let U :� {(x1, x2): x2> 0} denote the upper half plane and suppose that
x(1)� (a, 0), x(2)� (b, 0)2 @U with a< b, g2 :� {(x1, 0) : aEx1E b} and
g3 :� @U \ g2 . Let g1 be any piecewise smooth arc connecting and including x(1)

and x(2) which lies entirely (apart from its end-points x(1) and x(2)) below the
closed upper half plane �U. Then g1[ g3 divides the plane into two regions. Let D
be the region above g1[ g3� @D, containing U, and let S be the region enclosed
by g1 and g2; see Figure 1.
The solution of the boundary value problem (BVP) consisting of the

Helmholtz equation in the region D with an impedance or Robin boundary
condition on @D and its reformulation as a boundary integral equation (BIE)
will be discussed. It will be assumed throughout that g3 has a constant
admittance bc with bc� 0 (rigid boundary) or Rebc> 0 (energy absorbing
boundary).
Boundary integral equation formulations for this problem but assuming an

entirely rigid boundary (leading to a Neumann boundary condition) are given in
the context of predicting water-wave climates in harbours in reference [1]. The
harbour resonance problem is of importance in coastal engineering, where small
harbour oscillations excite large motions in ship-mooring causing considerable
damage. To minimize such events the characteristics of harbour response must
be determined. Hwang and Tuck [1] adopt a single-layer potential method which
determines the wave-induced oscillations using a distribution of sources along
the boundary of the harbour (g1) and coastline (g3) with unknown source
strengths. Lee [2] applies Green's second theorem in both the regions inside and
outside the harbour, S and U, respectively, which is the method adopted in this
study, and matches the wave-amplitudes and their normal derivatives at the
harbour entrance (g2). The same integral equation approach as Lee [2] is used by
Shaw [3]. These methods were compared with experimental scale models for
rectangular basins and real harbours and good agreement was found.
A related problem is the case when g1 lies entirely within rather than below the

upper half-plane U, and this case has been used as a model of acoustic
propagation over outdoor noise barriers (see e.g., reference [4]). In this case a
formulation as a single integral equation over g1 is possible using the impedance
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Figure 1. Geometry of model.
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Green's function for the upper half-plane U as fundamental solution. This
approach fails when g1 lies below the upper half-plane U since this Green's
function is unde®ned at points outside U. For a recent general review of the
application of boundary integral equation methods in modelling outdoor noise
problems see reference [5].
Section 2 describes the formulation of the boundary value problem in the

unbounded domain. The boundary integral equation is formulated in section 3,
derived from the BVP via applications of Green's second theorem in U and S.
This method coincides with that of Hwang and Tuck [1] when the boundary is
completely rigid. For bc 6� 0 the fundamental solution in the upper half plane U
used is the Green's function Gbc for the Helmholtz equation with impedance
boundary condition of constant admittance bc on the boundary @U. The integral
equation formulation is a coupled system of three integral equations, two
second-kind Fredholm equations and one ®rst-kind Fredholm equation.
Equivalence of this system with the original boundary value problem, and thus
uniqueness of solution at all wavenumbers of the integral equation formulation
is then established.
The numerical method of solution of the BIE implemented is a product

integration method [6] using the product mid-point rule and is presented in
section 4. The convergence of the numerical scheme is demonstrated
experimentally in section 5. Predictions of attenuation, in excess of that in free-
®eld propagation, are presented for a traf®c noise spectrum, in section 6, for site
con®gurations where the traf®c noise is propagating out of a cutting and onto
surrounding ¯at ground. To illustrate the scope of the mathematical model
calculations are made which examinine the effect on the excess attenuation of the
depth of the cutting and of the effective ¯ow resistivity of the surrounding ¯at
ground surface.
The discussion and numerical scheme is limited throughout to the case of a

coherent line source of sound, which has the advantage that the mathematical
problem is two-dimensional so that the computational problem is feasible. Of
course a traf®c noise stream is more realistically modelled as an incoherent line
source, especially as regards calculation of Leq values, and a single vehicle is
more realistically modelled as a point source of sound. Both these cases, via
partial Fourier transformation, can be reduced to the solution of a sequence of
two-dimensional problems with a coherent line source of sound which can then
be treated using the formulation and numerical scheme described: see Duhamel
[7] or Chandler-Wilde [5] for details.

2. FORMULATION AS A BOUNDARY VALUE PROBLEM

Given a source at x0 somewhere in the region D, the pressure induced at x,
denoted by p(x) (a harmonic time dependence e±iwt is assumed and suppressed
throughout), may be written as the sum of the incoming ®eld and the scattered
®eld, that is p(x)�Gf (x, x0)�P(x) where Gj (x, x0) :�ÿi/4H�1�0 (kjxÿ x0j) (H�1�0 is
the Hankel function of the ®rst-kind of order zero and k the wavenumber) is the
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free-®eld Green's function. The pressure p is assumed to satisfy the following
BVP:

BVP1. Given k> 0 and an impedance over the ground, b, such that b is
constant (�bc) on g3 , the ¯at surface, ®nd p such that

p�x� � P�x� � Gj�x, x0�, x 2 �D\fx0g, �1�
and such that p satis®es the Helmholtz equation,

�r2 � k2�p�x� � 0, x 2 D\fx0g, �2�
the impedance boundary condition,

@p�x�
rn � ikb�x�p�x�, x 2 @D, �3�

and the Sommerfeld radiation conditions

@p�x�=@rÿ ikp�x� � o�rÿ1=2�,

p�x� � O�rÿ1=2�, �4�
uniformly in x as r :� |x|!1.
The above boundary value problem has at most one solutionÐsee references

[8, 9] where the existence of a solution is also established under the assumption
that at corners of @D the interior and exterior angles do not vanish.

3. REFORMULATION OF THE BOUNDARY VALUE PROBLEM AS AN
INTEGRAL EQUATION

Let g be a simple open or closed curve. Given a function f de®ned on g, the
function u de®ned by

u�x� � Sgf�x� �
�
�

Gf�x, y�f�y�ds�y�, x 2 R2, �5�

is called the acoustic single-layer potential and the function v de®ned by

v�x� � Kgf�x� �
�
�

@Gfx, y�
@n�y� f�y�ds�y�, x 2 R2, �6�

is called the acoustic double-layer potential.
Denote by Gbc(x, x0) the fundamental solution to the Helmholtz equation in �U

which satis®es the Sommerfeld radiation conditions (4) and the impedance
boundary condition @Gbc(x, x0)/@n(x)� ikbcGbc(x, x0) on x2 @U.
Analytical expressions for Gbc(x, x0) have been obtained by Rasmussen [10],

Filippi [11] (and see Habault [12]), and by Chandler-Wilde and Hothersall [13].
From reference [13] one has that, for x, x02 �U, x 6� x0 ,

Gbc�x, x0� � Gf�x, x0� � Gf�x, x00� � Pbc�k�xÿ x00��,
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where x00 is the image of x0 in the x1-axis and, for ÿ1< x<�1, Ze0, bc 6� 1,
Pbc((x, Z)) is given by

Pbc��x, Z�� �
bce

ir

p

�1
0

tÿ1=2 eÿrtg�t� dt� bc e
ir�1ÿa��

2
�������������
1ÿ b2c

q erfc�eÿip=4 ��������
ra�
p �, �7�

with r� (x2� Z2)1/2, g� Z/r, a�� 1� bcgÿ
�������������
1ÿ b2c

q �������������
1ÿ g2

p
, erfc the comple-

mentary error function, and

g�t� � ÿbc ÿ g�1� it�������������
tÿ 2i
p �t2 ÿ 2i�1� bcg�tÿ �bc � g�2� ÿ

eÿip=4
������
a�
p

2
�������������
1ÿ b2c

q
�tÿ ia��

:

(Note that all the complex square roots in the above expressions are to be taken
with non-negative real part.) The above formulae for Gbc(x, x0) are used for all
the numerical calculations reported later in this paper. The integral in (7) can be
evaluated ef®ciently and accurately by Gauss±Laguerre quadrature as described
and analysed in reference [13].
Given f de®ned on g2 , call the function

w�x� � Sbcf�x� �
�
�2

Gbc�x, y�f�y�ds�y�, x 2 �U �8�

the modi®ed acoustic single-layer potential.
Henceforth, abbreviate Sgi as Si and Kgi as Ki , for i� 1, 2 and in the following

de®ne single and double-layer potential operators over open arcs. For i� 1, 2 let
L2(gi) denote the set of functions square integrable on gi . De®ne single-layer
potential operators from L2(gi) to L2(gj), for i, j� 1, 2, by

Sij�x� �
�
gi
Gf�x, y�f�y�ds�y�, x 2 gj, �9�

and de®ne double-layer potential operators from L2(gi) to L2(gj), for i, j� 1, 2,
by

Kijc�x� �
�
gi

@Gf�x, y�
@n�y� c�y�ds�y�, x 2 gj: �10�

De®ne a modi®ed single-layer potential operator by

S
bc
22f�x� �

�
g2
Gbc�x, y�f�y�ds�y�, x 2 g2: �11�

For simplicity assume henceforth that x0 =2 �2 , so that x02D\g2 . The integral
formulation is ®rst stated followed by its derivation.
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Suppose that p satis®es BVP1. Then it can be shown that

p�x� �
�
g2
Gbc�x, y� ikbcp�y� ÿ

@p�y�
@n

� �
ds�y� � Z�x0�Gbc�x, x0�, x 2 �U \fx0g,

�12�
where

Z�x0� � 1; x0 2 U,
0, x0 2 S,

�
and

e�x�p�x� �
�
g2

Gf�x, y� @p�y�
@n
ÿ @Gf �x, y�

@n�y� p�y�
� �

ds�y�

�
�
g1

p�y� @Gf �x, y�
@n�y� ÿ ikb�y�Gf�x, y�

� �
ds�y�

� �1ÿ Z�x0��Gf�x, x0�, x 2 �S \fx0g, �13�
where e(x)� 1, x2S, � 0, x2R2 \ �S, and e(x)� 1/2 at points x2 @S \{x(1), x(2)}
which are not corner points.
To derive equation (12) Green's second theorem is applied to the functions

u� p and v�Gbc(x,.) in a region E consisting of that part of U contained in a
large circle of radius R centred on the origin, x0 . Since r2u� k2u� dx ,
r2v� k2v� dx0 in a distributional sense in E, where dy(x)� d(xÿ y) and d
denotes the two-dimensional Dirac delta function, one obtains

u�x� � Z�x0�v�x0� �
�
@E

u
@v

@n
ÿ v

@u

@n

� �
ds, �14�

where Z(x0)� 1 for x02U� 0, for x02S. Thus, letting R!1 in equation (14)
one obtains for x2U \ {x0},

p�x� � Z�x0�Gbc�x, x0� �
�
@U

p�y� @Gbc�x, y�
@n�y� ÿ Gbc�x, y�

@p�y�
@n

� �
ds�y�: �15�

The part of the integral on the circular arc of radius R in equation (14) vanishes
as R!1 since u and v both satisfy the Sommerfeld radiation conditions (4).
Utilizing the boundary condition satis®ed by p on dU (equation (3)) and by

Gbc on dU one obtains equation (12) for x2U \{x0}. Using the continuity of p
and that of the modi®ed single layer potential the validity of (12) is extended
from U \{x0} to �U\{x0}.
To derive equation (13) apply Green's representation theorem [14] to p in S.

Utilizing the boundary condition (3) satis®ed by p on g1 one obtains equation
(13) for x2S \{x0}. Using the continuity of p in �D\{x0} and @p/@n across g2 and
standard jump relations for layer potentials [14] the validity of equation (13) is
extended from S \{x0} to �S \{x0}.
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Equations (12) and (13) express the pressure in D in terms of the unknowns p
and dp/@n on g2 and p on g1 . Let p1 :� p|g1 , p2 :� p|g2 and q :� ikbcp2ÿ @p/@n|g2 .
In terms of the integral operators de®ned above, and noting that K22p2� 0, it
has been shown that p1 , p2 and q satisfy the following integral equation problem:

IEP1. Find p12L2(g1), p22L2(g2) and q2L2(g2) such that

p2 � S
bc
22gbc , �16�

1
2 p2 � K12 p1 ÿ ikS12�bp1� � ikbcS22 p2 ÿ S22q� g2, �17�
1
2 p1 � K11 p1 ÿ ikS11�bp1� � ikbcS21 p2 ÿ S21qÿ K21 p2 � g1, �18�

where gbc , g22C(g2), g12C(g1) are de®ned by gbc(x) :� Z(x0)Gbc(x, x0),
g2(x) :� (1ÿ Z(x0))Gf (x, x0), x2 g2 , and g1(x) :� (1ÿ Z(x0))Gf (x, x0), x2 g1 .
The above arguments show that the system of integral equations IEP1 has a

solution, namely p1 :� p|g1 , p2 :� p|g2 and q :� ikbcp2ÿ (@p/@n)|g2 , where p is the
solution of the boundary value problem BVP1. But it is not immediately obvious
that this is the only solution of IEP1: indeed, it is well known that integral
equation formulations in acoustic scattering can suffer from non-uniqueness of
solution at an in®nite set of positive wavenumbers [14], which leads to
inaccuracy and instability when the equations are solved numerically. It is shown
below that this non-uniqueness of solution does not arise for the present
formulation by arguing that, conversely, if p1 , p2 and q satisfy IEP1 and p is
de®ned by equations (12) and (13) then p satis®es BVP1. As a corollary of this
result and that BVP1 is uniquely solvable one has immediately that IEP1 has
exactly one solution for all wavenumbers k> 0. To simplify the argument
somewhat we assume that @S has no corner points except at x(1) and x(2).
Thus, suppose that p1, p2 and q satisfy IEP1 and de®ne p : �D\{x0}!C by

p�x� � S bcq�x� � Z�x0�Gbc�x, x0�, x 2 �U, �19�

e�x�p�x� � K1p1�x� ÿ ikS1�bp1��x� � ikbcS2p2�x� ÿ S2q�x�
ÿ K2p2�x� � �1ÿ Z�x0��Gf�x, x0�, x 2 �S \g2: �20�

It will be shown that p satis®es BVP1, and that p1� p|g1 , p2� p|g2 and q�
ikbcp2ÿ @p/@n|g2 .
First of all, with p de®ned by equations (19) and (20), de®ne P by equation

(1), i.e., P(x)� p(x)ÿGf (x, x0), x2 �D \{x0}. It is easy to see that P satis®es the
Sommerfeld radiation and boundedness conditions (4) and the Helmholtz
equation in U and in S, and it follows immediately from standard jump relations
for layer potentials [14] and from the integral equations (16)±(18) that p2� p|g2 ,
p1� p|g1 , q� ikbcp2ÿ @p/@n|g2 and @p/@n� ikbcp on g3 (for details see reference
[9]).
To recover the boundary conditions on g1 satis®ed by p and the Helmholtz

equation in D it is shown ®rst that the right-hand side of equation (20) is
identically zero outside �S. Let

F�x� :� K1p1�x� ÿ ikS1�bp1��x� � ikbcS2 p2�x� ÿ S2 q�x� �21�
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ÿK2 p2�x� � �1ÿ Z�x0��Gf�x, x0�, x 2 R2 �S: �22�
Then F satis®es the Helmholtz equation and Sommerfeld radiation conditions
and, from standard jump relations for layer potentials [14] and the integral
equations (17) and (18), F(x)! 0 as x approaches @S. Thus, F satis®es a
radiation problem in the exterior of S with homogeneous Dirichlet data F� 0 on
@S and hence vanishes identically [15]. The boundary conditions on g1 , are now
recovered for standard jump relations applied to the right-hand side of equations
(20) gives, on g1 ,

@p

@n
� ikbp� @F

@n
� ikbp: �23�

To see ®nally that p and its derivatives are continuous across g2 and that p
satis®es the Helmholtz equations in the whole of D, let UR , DR denote the parts
of U and D respectively contained in a large circle of radius R centred on the
origin, with R large enough so that x02DR , g2�DR . Applying Green's
representation theorem [14] in UR one obtains that

e1�x�p�x� �
�
@UR

@gf �x, y�
@n�y� p�y� ÿ Gf �x, y� @p�y�

@n

� �
ds�y�

� Z�x0�Gf �x, x0�, x 2 R2\fx0g, �24�
where

e1�x� :�
1; x 2 UR,
1=2, x 2 g2,
0, x 2 �R2\�UR�:

8<: �25�

Now add the right-hand side of equation (24) to the right-hand side of equation
(20), noting that the right-hand side of equation (20) has the value p(x) in S, the
value 1

2 p2(x)� 1
2 p(x) on g2 , by equation (17), and the value F(x)� 0 in U, to ®nd

that

p�x� � Gf �x, x� �
�
@DR

@Gf �x, y�
@n�y� p�y� ÿ Gf �x, y� @p�y�

@n

� �
ds�y�, x 2 DR:

�26�
It follows from this last equation that P and its derivatives are continuous across
g2 and that P satis®es the Helmholtz equation in DR and hence in D.

4. NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS

To solve the above system of integral equations (16)±(18) numerically ®rst
divide g1 and g2 into boundary elements. Approximate g1 by an open polygon
consisting of N1 straight-line elements g11, . . . , gN1

1 so that the end-points of the
elements lie on the arc g1; see Figure 2. For n� 1, 2, . . . , N1 , x

n
1 denotes the mid-
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point and hn1 the length of �n1 and h1 :�max hn1. Similarly the straight
line boundary g2 is divided into N2 elements g12, . . . , gN2

2 and xh2, h
n
2 denote the

mid-point and length of gn2, and h2 :�max hn2 . Also, de®ne h :�max (h1 , h2) and
N� (N1 , N2).
Assuming that h, the maximum element length, is small enough so that p1 , b,

and p2 , q are approximately constant on each element of g1 and g2 , respectively,
then the following approximations to equations (12) and (13) are valid:

p�x�1
XN2

n�1

�
gn
2

Gbc�x, y� ds�y�q�xn2� � Z�x0�Gbc�x, x0�, x 2 �U \fx0g, �27�

e�x�p�x�1ikbc
XN2

n�1

�
gn
2

Gf �x, y� ds�y�p2�xn2� ÿ
XN2

n�1

�
gn
2

Gf �x, y� ds�y�q�xn2�

ÿ
XN2

n�1

�
gn
2

@Gf �x, y�
@n�y� ds�y�p2�xn2� �

XN1

n�1

�
gn
1

@Gf �x, y�
@n�y� ds�y�p1�xn1�

ÿ ik
XN1

n�1

�
gn
1

Gf �x, y� ds�y�b�xn1�p1�xn1�

� �1ÿ Z�x0��Gf �x, x0�, x 2 �S \fx0g: �28�

The integrals in equations (27) and (28) are further replaced by
approximations, for i� 1, 2,

a�x, gni �1
�
gn
i

Gf�x, y�ds�y�, �29�

b�x, gni �1
�
gn
i

@Gf�x, y�
@n�y� ds�y�, �30�

x2

x1

2
5

2
4

2
3

2
2

2
1

1
1

1
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1
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1
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Figure 2. Cutting discretization
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c�x, gn2�1
�
gn
2

Gbc�x, y� ds�y�, �31�

to be de®ned shortly. Thus, p is approximated by pN where pN satis®es the
approximate integral equations

pN�x� �
XN2

n�1
c�x, gn2�qN�xn2� � Z�x0�Gbc�x, x0�, x 2 �U \fx0g, �32�

e�x�pN�x� �
XN2

n�1
�fikbca�x, gn2� ÿ b�x, gn2�gpN2 �xn2� ÿ a�x, gn2�qN�xn2��

�
XN1

n�1
fb�x, gn1� ÿ ikbN�xn1�a�x, gn1�gpN1 �xn1�

� �1ÿ Z�x0��Gf �x, x0�, x 2 �S \fx0g: �33�

In these equations qN denotes a piecewise constant (constant on each
ele-ment) approximation to q and pNi :� pNjgi , i� 1, 2. The approximations
to the layer-potentials a(x, gni ), b(x, gni ), i� 1, 2 and c(x, gni ), are de®ned by
simple product mid-point rules. Noting that ÿi/4H�1�0 (x)� ln|x|A(x)�
B(x)� ln|x|A(0)�C(x) where A(z)� J0(z)/(2p) and B(z) are even, entire functions
(16), de®ne, for i� 1, 2,

a�x, gni � :�
�
gn
2

ln�kjxÿ yj� ds�y�A�kjxÿ xni j� � hni B�kjxÿ xni j�, x 2 R2, �34�

b�x, gni � :� 1

2p

�
gn
i

�yÿ x� � n�y�
jyÿ xj2 ds�y� � hni C�kjxÿ xni j�, x 2 R2: �35�

The integral in equation (35) can be evaluated exactly; its magnitude, in fact, is
the angle at x subtended by the arc yni , provided x =2 gni . Both b(x, fn

i ) and the
double-layer potential it approximates are discontinuous across gni and take the
value zero on gni . The integral in equation (34) can also be evaluated exactly.
Noting equation (7) de®ne

c�x, gn2� :� 2a�x, gn2� � d�x, gn2�, �36�
where d(x, gn2) denotes an approximation to

�
gn
2
Pbc(k(xÿ y))ds(y). De®ne the

approximation d by

d�x, gn2� :� hn2Pbc�k�xÿ xn2��, x 2 �U \fxn2g,
hn2=2�Pbc��0, 0�� � Pbc��khn2=2, 0���, x � xn2:

�
�37�

This approximation is just the midpoint rule when x2 �U \{xn2}. For x� xn2 ,
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�
gn
2

Pbc�k�xÿ y�� ds�y� �
�hn

2
=2

ÿhn
2
=2

Pbc��x, 0�� dx, �38�

� 2

�hn
2
=2

0

Pbc��x, 0�� dx, �39�

and the approximation d�xn2, gn2� is the trapezium rule applied to equation (39).
This is more accurate than the midpoint rule applied to equation (38) since,
while P̂bc((x, 0)) is a continuous function of x, @P̂bc((x, 0))/@x has a simple
discontinuity at x� 0 (see reference [17]).
Collocating at the midpoint of each boundary element gives a system of

NT� 2N2�N1 linear simultaneous equations for the values pN1 , p
N
2 and qN at the

midpoints of the elements which can be written in matrix form as

�A�pN � g, �40�
where [A] is a NT6NT complex-valued matrix and is given by

�A� �
1
2 I� ikS11Bÿ K11 K21 ÿ ikbcS21 S21

ikS12Bÿ K12
1
2 Iÿ ikbcS22 S22

0 I ÿSbc
22

264
375, �41�

pN � �pN1 �x11�, . . . , pN1 �xN1

1 �, pN2 �x12�, . . . , pN2 �xN2

2 �, qN�x12�, . . . , qN�xN2

2 ��T, �42�

B � diag�bN�x11�, . . . , bN�xN1

1 ��, �43�

g � ��1ÿ Z�x0��g1�x11�, . . . , �1ÿ Z�x0��g1�xN1

1 �, �1ÿ Z�x0��g2�x12�, . . . ,

�1ÿ Z�x0��g2�xN2

2 �, Z�x0�gbc�x12�, . . . , Z�x0�gbc�xN2

2 ��T: �44�
The elements of the sub-matrices Sij , Kij , S

bc
22 are given by

�Sij�lm � a�xlj, gni �, l, n � 1, 2, . . . , Nj, �45�

�Kij�lm � b�xlj, gni �, l, n � 1, 2, . . . , Nj, �46�

�Sbc
22�lm � c�xl2, gn2�, l, n � 1, 2, . . . , Nj, �47�

The approximations a(x, gni ), b(x, g
n
i ) i� 1, 2 and c(x, gn2) de®ned above, while

relatively simple, are accurate for all positions x2D and elements gni , g
n
2. In

particular one can show, using results on product integration in reference [6],
that the error in a(x, gni ), b(x, g

n
i ), and c(x, gn2) is O(h±E) as h! 0 with x ®xed, for

all E> 0 and x2U[S (x2U for c(x, gn2)). Moreover, for a(x, gni ), i� 1, 2, and
c(x, gn2) this convergence is uniform in x and n; this is also true for b(x, gni ),
i� 1, 2, for > 1.
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For very large NT the cost of solution of the linear equations (40) dominates
(requiring 1N2

T/3 multiplications if Gaussian elimination or a similar method is
used). For values of NT1 1000 the cost of setting up the matrix [A] is important,
especially if bc 6� 0. When bc 6� 0 this cost is dominated by the evaluation of
P̂bc(k(xmÿ xn)) for m, n� 1, . . . , N2 .
Once the values of pN at the element midpoints have been obtained by solving

equation (40), the subsequent calculation of pN(x) at an arbitrary point in D
using equations (32) and (33) has a very much smaller computational cost
proportional to NT .

5. EXPERIMENTAL CONVERGENCE TESTS: ACOUSTIC SCATTERING
FROM A RECTANGULAR CUTTING

The numerical solution (32)±(33) of the integral equations IEP1 described in
the previous section is tested with a rectangular cutting and ®xed frequency
f� 100 Hz and sound speed c� 343 ms±1. gj is divided into boundary elements of
constant length hj for j� 1, 2.
First, de®ne the errors

EN
p1

:� p1 ÿ pN1 , E
N
p2

:� p2 ÿ pN2 , E
N
q :� qÿ qN and EN�x� :� p�x� ÿ pN�x�:

�48�
The error on g1 and g2 will be measured in discrete L2 norms de®ned by

k f kgj :�
1

N

XN
m�1
j f �xmj �j2

( )
, j � 1, 2: �49�

To illustrate how the numerical scheme converges as h :�max(h1 , h2)! 0
experimental convergence rates are calculated. These will be assumed to have the
asymptotic behaviour

kEN1
p1
kg1 0C1h

aP1 , kEN2
p2
kg2 0C2h

aP2 , kEN2
q kg2 0C3h

aq and jEN�x�j0C4h
a,

�50�
as h! 0 with h1/h2 ®xed, where Cj , j� 1, 2, 3, 4, ap1 , ap2 , aq , and a are constants.
To test the method consider the case where the incident wave is the plane

wave eÿikx2 rather than the cylindrical wave Gf (x, x0). In this case the term
Z(x0)Gbc(x, x0) in equation (12) must be replaced by pbc�x� � eÿikx2�
�1ÿ bc�=�1� bc�eikx2 and the term (1ÿ Z(x0))Gf(x x0) in equation (13) re-
placed by 0. The geometry is as in Figure 3, the depth and the width of the
cutting being l� 2p/k� 3�43 m. For this geometry the exact solution with
the boundary conditions shown in Figure 3 is just p(x)� pbc(x).
Tables 1±4 show results for the case when bc has the value bc� 0�37ÿ 0�28i.

Convergence of the numerical scheme is observed with, from Tables 1 and 2,
ap1 , ap211�5 and a convergence rate of aq1 0�5 observed for q in Table 3. Table
4 shows the convergence rate to be a1 1�5 for the error in p(x) at a typical
receiver position x� (ÿ0�5, 1�0) m.
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Further numerical experiments investigating the rate of convergence of the
method for other geometries and incident ®elds are described in reference [8]: in
every case the convergence rate for the error in p(x) at the ®nal receiver position
x is in the range a� 1�5±2�0.
The above convergence has not been analysed theoretically, and there appear

to be no convergence or stability results in the literature for collocation methods
applied to coupled systems of ®rst and second kind boundary integral equations,
of the type IEP1. For convergence results for boundary element collocation
methods applied to uncoupled ®rst and second kind integral equations on

x2

x1

∂

Incident plane wave

=ik  c p
p

∂n

∂
=ik  c p

p
∂n

∂
=ik  c p

p
∂n

∂
=0

p
∂n

∂
=0

p
∂n

Figure 3. Geometry for plane-wave problem.

TABLE 1

Errors and experimental convergence rate for p1 for
impedance plane-wave problem. Throughout N2�N1/3

so that h2� h1

N1 h1/l jjEN
p1
jjg1 jjEN

p1
jjg1 jjE2N

p1
jjg1 ap1

6 1/2 0�53 5�85 2�55
12 1/4 9�0E-2 3�30 1�72
24 1/8 2�7E-2 3�14 1�65
48 1/16 8�7E-3 3�05 1�61
96 1/32 2�8E-3 2�99 1�58

192 1/64 9�5E-4 2�94 1�56
384 1/128 3�2E-4 ± ±
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TABLE 2

Errors and experimental convergence rate for p2 for
impedance plane-wave problem. Throughout N2�N1/3

so that h2� h1

N1 jjEN
p2
jjg1 jjEN

p2
jjg2=jjE2N

p2
jjg2 ap2

6 0�47 36�46 5�19
12 1�3E-2 2�85 1�51
24 4�5E-3 2�03 1�02
48 2�2E-3 2�48 1�31
96 8�9E-4 2�64 1�40

192 3�4E-4 2�70 1�43
384 1�2E-4 ± ±

TABLE 3

Errors and experimental convergence rate for q� @p/
@nÿ ikbcp for impedance plane-wave problem. Through-

out N2�N1/3 so that h2� h1

N1 jjEN
q jjg2 jjEN

q jjg2=jjE2N
q jjg2 aq

6 3�48 30�1 4�91
12 1�6E-2 2�65 1�4
24 6�0E-3 1�10 0�13
48 5�4E-3 1�29 0�36
96 4�2E-3 1�35 0�43

192 3�1E-3 1�38 0�47
384 2�3E-3 ± ±

TABLE 4

Errors and experimental convergence rate for im-
pedance plane-wave problem at receiver position
x� (ÿ0�5, 1�0) m. Througout N2�N1/3 so that h2� h1

N1 jEN(x)j jENj/jE2Nj a

6 0�34 36�6 5�19
12 9�2E-3 9�23 3�21
24 9�9E-4 2�47 1�35
48 4�0E-4 4�86 2�28
96 8�3E-5 2�86 1�52

192 2�9E-5 3�02 1�6
384 9�5E-6 ± ±
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polygonal domains, see references [18±21] and the references therein. It is well
known that for piecewise constant collocation methods applied to second kind
integral equations a convergence rate a� 2 is the best that can be achieved (see
e.g., reference [6]), which is consistent with the present results.
One would expect some improvements in accuracy and rate of convergence

with the numerical method described (though not a higher convergence rate than
a� 2) if a graded mesh is adopted (see e.g., references [18, 20, 21]), i.e., if smaller
boundary elements are used near the corners, at which points the kernels of the
integral operators and the solution p have singularities (see reference [22]).

6. RESULTS

Some results are shown in this section illustrating the use of the numerical
method described in the previous section to simulate traf®c noise propagating
out of a cutting onto surrounding ¯at ground.
For the results shown, the admittance bc of the absorbing ground is calculated

using the Delany and Bazley formulae [23] which give the normalized admittance
and complex wavenumber, kG , of a porous medium as functions of s/f, where s
is an effective ¯ow resistivity and f is the frequency. The ground is modelled as a
porous layer of thickness D on top of a rigid half-space, and it is assumed that
the refractive index jkG/kj4 1 so that the ground is locally reacting.
The following calculations were carried out in terms of excess attenuation

which is de®ned by

EA � ÿ20 log10
p�x�
pFF�x�
���� ����dB, �51�

where p(x), pFF(x)�Gf (x, x0) denote actual and free-®eld acoustic pressure,
respectively. Throughout, broad band excess attenuation results are given, which
are predictions for a single vehicle, A-weighted, road traf®c noise spectrum; see
Table 5. These are calculated by combining logarithmic results for each third
octave centre frequency between 63 and 3162 Hz. The results are shown as
contour plots using UNIRAS software. For the results shown, elements of size
l/5 (l the wavelength) were used at each frequency.
It will be recalled that the numerical model assumes a coherent line source of

sound while a single vehicle is more realistically modelled as a point source of
sound. However, experimental measurements [4, 5] and computer simulations [7]
for the related problem of outdoor propagation over noise barriers on a ground
plane, suggest that excess attenuation values in the plane through the point
source perpendicular to the cutting will be accurately predicted if the point
source is replaced by a coherent line source of sound.

6.1. THE EFFECT OF VARYING THE DEPTH OF THE CUTTING

To begin with the effect of varying the depth, H, of the cutting, in the range
0�3 to 1�5 m is determined. (The noise reduction effects of shallow road cuttings
are of some current interest in the UK; see reference [24].) Figure 4 shows the
geometry used. A source was placed, in all cases, 0�5 m from the ¯oor of the
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cutting, the cutting being 11�0 m wide at the top and 9 m wide at the bottom.
The depth, H, of the cutting was varied from 0�3 to 1�5 m. The surface type was
the same on the ground surface outside the cutting as on the sides of the cutting.
The ¯oor of the cutting was kept rigid. The admittance used for the ground
surface and sides of the cutting was that predicted by the Delany and Bazley
formulae [23] with an effective ¯ow resistivity of s� 250 000 N s m±4 and depth,
D� 0�1 m, values appropriate to grassland.
In each of Figures 5±10 there is an increase in level of around 3 dB(A)

relative to that in free-®eld conditions directly above the cutting, independent of

TABLE 5

Sound pressure level at third octave centre
frequencies, at a distance of 1 m from the

source, in free-®eld conditions

Frequency (Hz) Source strength (dB)

63�1 75�3
79�4 80�0

100�0 83�3
125�8 85�7
158�5 88�2
199�5 89�8
251�2 91�0
316�2 91�7
398�1 92�9
501�2 94�5
631�0 95�9
794�3 97�0

1000�0 98�1
1259�0 98�2
1584�9 98�0
1995�3 96�2
2511�9 93�8
3162�3 91�6

x2

x1

Source

0.5 m

4.5 m 4.5 m

1 m 1 m

H

Figure 4. Geometry for cutting height (not to scale).
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the depth of the cutting. In this location the path difference between the direct
wave and the wave re¯ected from the rigid ¯oor of the cutting is so large
(e 1 m) that there is a rapid ¯uctuation between constructive and destructive
interference as the frequency increases so that, effectively, the re¯ection is
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–1 –1

–2
–2

–3

0 0 1

3

1
2

34

Figure 5. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
an impedance plane. The source is at (ÿ5�5, 0�6) m.
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Figure 6. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
a cutting of depth 0�3 m. The source is at (ÿ5�5, 0�2) m.
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incoherent for a broad band traf®c noise spectrum. At ground level about 40 m
from the cutting the excess attenuation increases by about 1 dB(A) for every
increase in depth of the cutting of 0�3 m.
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Figure 7. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
a cutting of depth 0�6 m. The source is at (ÿ5�5, ÿ0�1) m.
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Figure 8. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
a cutting of depth 0�93 m. The source is at (ÿ5�5, ÿ0�4) m
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6.2. THE EFFECT OF GROUND ABSORBENCY

Next the effect of ground absorbency is determined Figure 11 shows a second
cutting geometry. Again, the ¯oor of the cutting is rigid in the simulations and
the sides of the cutting and ground surface have the same surface admittance
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Figure 9. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
a cutting of depth 1�2 m. The source is at (ÿ5�5, ÿ0�7) m.
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Figure 10. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
a cutting of depth 1�5 m. The source is at (ÿ5�5, ÿ1�0) m.
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given by the Delany and Bazley formulae. The cutting is 14�56 m wide and 0�9 m
deep. The source is positioned 0�5 m vertically above the road surface.
Figure 12 shows the excess attenuation up to 40 m from the cutting when all

surfaces are rigid (s!�1 in the Delany and Bazley formulae). Figures 13±15
show the effect of varying the effective ¯ow resistivity in the range s� 300 000±
150 000 N sm±4. (Lower values of s represent more absorbing ground.) For the
most absorbent ground and sides of the cutting (Figure 15) an increase in excess
attenuation of around 7 dB(A) is observed at 40 m compared to the hard
ground case, this reducing to 4 dB(A) for the case s� 300 000 N s m±4 (Figure
13). The porous layer depth is kept ®xed throughout at D� 0�1 m.

x2

x1

Source

0.5 m

4.5 m4.5 m2.5 m2.25 m

0.71 m

0.19 m

0.71 m

Figure 11. Geometry for a more realistic situation (not to scale).
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Figure 12. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
a rigid cutting.
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Figure 13. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
a cutting with s� 300 000N sm±4 and depth, D� 0�1 m.
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Figure l4. Contours showing excess attenuation for an A-weighted traf®c noise spectrum above
a cutting with s� 250 000N sm±4 and depth, D� 0�1 m.
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7. CONCLUSIONS

In this paper the problem of acoustic propagation from a coherent line source
within a cutting of arbitrary cross-section and surface impedance out onto a
homogeneous impedance plane has been formulated as a boundary value
problem for the Helmholtz equation and then reformulated as a coupled system
of three boundary integral equations. Equivalence of the boundary value
problem and integral equation formulation at all wavenumbers has been
demonstrated, so that the formulation does not suffer from irregular frequencies,
often encountered in the integral equation formulation of scattering problems.
A boundary element scheme for numerical treatment of the integral equation

formulation has been described. Results have been presented demonstrating
convergence of the numerical scheme for a simple case where the exact solution
can be calculated analytically.
The scope of the numerical scheme to provide predictions of practical interest

has been demonstrated by computations for a broad band traf®c noise spectrum
of propagation from a vehicle source located at 0�5 m above the ¯oor of the
cutting out onto surrounding ¯at ground. The signi®cant effects of varying
cutting depth and of varying the absorbency (effective ¯ow resistivity) of the
surrounding ground plane have been illustrated.
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